Fast porous visco-hyperelastic soft tissue model for surgery simulation: application to liver surgery.

نویسندگان

  • Stéphanie Marchesseau
  • Tobias Heimann
  • Simon Chatelin
  • Rémy Willinger
  • Hervé Delingette
چکیده

Understanding and modeling liver biomechanics represents a significant challenge due to its complex nature. In this paper, we tackle this issue in the context of real-time surgery simulation where a compromise between biomechanical accuracy and computational efficiency must be found. We describe a realistic liver model including hyperelasticity, porosity and viscosity that is implemented within an implicit time integration scheme. To optimize its computation, we introduce the Multiplicative Jacobian Energy Decomposition (MJED) method for discretizing hyperelastic materials on linear tetrahedral meshes which leads to faster matrix assembly than the standard Finite Element Method. Visco-hyperelasticity is modeled by Prony series while the mechanical effect of liver perfusion is represented with a linear Darcy law. Dynamic mechanical analysis has been performed on 60 porcine liver samples in order to identify some viscoelastic parameters. Finally, we show that liver deformation can be simulated in real-time on a coarse mesh and study the relative effects of the hyperelastic, viscous and porous components on the liver biomechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation

In this work, we introduce an extension of the linear elastic tensor-mass method allowing fast computation of non-linear and visco-elastic mechanical forces and deformations for the simulation of biological soft tissue. We aim at developing a simulation tool for the planning of cryogenic surgical treatment of liver cancer. Percutaneous surgery simulation requires accurate modelling of the mecha...

متن کامل

Multiplicative Jacobian Energy Decomposition Method for Fast Porous Visco-Hyperelastic Soft Tissue Model

Simulating soft tissues in real time is a significant challenge since a compromise between biomechanical accuracy and computational efficiency must be found. In this paper, we propose a new discretization method, the Multiplicative Jacobian Energy Decomposition (MJED) which is an alternative to the classical Galerkin FEM (Finite Element Method) formulation. This method for discretizing non-line...

متن کامل

Adaptive Control Strategy for a Bilateral Tele- Surgery System Interacting with Active Soft Tissues

In this paper, the problem of control and stabilization of a bilateral tele-surgery roboticsystem in interaction with an active soft tissue is considered. To the best of the authors’ knowledge, theprevious works did not consider a realistic model for a moving soft tissue like heart tissue in beating heartsurgery. Here, a new model is proposed to indicate significant characteristics of a moving ...

متن کامل

Geometrically and Physically Non-linear Models for Soft Tissue Simulation

We describe extensions of the tensor-mass algorithm allowing fast computation of nonlinear and visco-elastic mechanical forces and deformations for the simulation of biological soft tissue. This work is part of a broader project aiming at the development of a simulation tool for the planning of cryogenic surgical treatment of liver cancer. Real-time deformation algorithms are usually based on l...

متن کامل

Efficient Nonlinear FEM for Soft Tissue Modelling and Its GPU Implementation within the Open Source Framework SOFA

Accurate biomechanical modelling of soft tissue is a key aspect for achieving realistic surgical simulations. However, because medical simulation is a multi-disciplinary area, researchers do not always have sufficient resources to develop an efficient and physically rigorous model for organ deformation. We address this issue by implementing a CUDA-based nonlinear finite element model into the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Progress in biophysics and molecular biology

دوره 103 2-3  شماره 

صفحات  -

تاریخ انتشار 2010